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Detailed observations are made of the breakdown of Friedel's law in electron diffraction, using the 
single-crystal intensity distribution from cadmium sulphide in the [2130] orientation. It has been found 
by experiment that no breakdown of Friedel's law occurs in the zero-order beam distribution. An 
analysis of the problem due to Moodie, using multiple-scattering diagrams, has also led to this result. 
Multiple-scattering diagrams are used here to illustrate the symmetry properties of the zero-beam dis- 
tribution. Rules are given for the deduction of the other symmetry elements of the projected structure 
from the diffraction-pattern symmetry, and from the occurrence of dynamic extinction bands in the 
kinematically forbidden reflexions. These are illustrated by further pictures from cadmium sulphide. 
This analysis is simplified in the present work by neglecting non-zero-layer interactions. Results ob- 
tained by n-beam calculation using the multi-slice method show the possibility of quantitative inter- 
pretation, and of absolute orientation determination. The limitations of the systematic dynamic ap- 
proximation and also of a systematic approximation using corrected scattering potentials are examined 
for this substance. 

1. Introduction 

One of the deductions to be made from n-beam dy- 
namic theory of electron diffraction is that Friedel's 
law should no longer hold for diffraction from a non- 
centrosymmetric structure. This is an example of a 
general property of dynamic intensities, namely their 
sensitivity to the phases of the structure factors and 
hence to the symmetry elements of the space group. 
However the element of centrosymmetry is in a class 
apart, since it cannot be detected directly in structure 
analysis based on the kinematic scattering theory of 
electrons, or the kinematic theory derived without ab- 
sorption for X-rays (Friedel, 1913; yon Laue, 1948). 
This and symmetries generated by reflexion operations 
are made obvious in the convergent beam electron dif- 
fraction pattern. If the dynamic intensities are expres- 
sed as a Born series (e.g. Cowley & Moodie, 1957; 
Fujiwara, 1959) it is seen that terms of second and 
higher order processes can lead to asymmetry in the 
diffraction pattern, and these terms can further be used 
for a more detailed analysis. 

Asymmetry in diffraction from a non-centred struc- 
ture was first reported by Thiessen & Moli~re (1939), who 
measured the mean inner potential by reflexion from 
the (111) and ( i i i )  faces of zinc sulphide. Miyake & 
Uyeda (1950) observed asymmetry within the reflexion 
(Bragg case) diffraction pattern from zinc sulphide, in 
an experiment which eliminated trivial geometrical (ex- 
citation error) asymmetries. More recently Tanaka & 
Honjo (1964) have observed contrast between 180 ° 
domains in the bright-field images of barium titanate 
crystals, which they attribute to the failure of Friedel's 
law. 

Ibers & Hoerni (1954) noted that complex scattering 
factors, first proposed as a correction to the kinematical 
theory, would lead to asymmetric intensities from a 
non-centred structure. Kohra (1954) independently 
pointed out that dynamic scattering without absorp- 
tion processes could lead to this result, in violation of 
Friedel's law, at least in the Bragg case. By solving 
the 3-beam equations for the case of specular reflexion 
he obtained a numerical result which approximately 
fitted Miyake & Uyeda's observation, and subsequently 
these authors (Miyake & Uyeda, 1955) reconsidered 
the problem in detail. A more general deduction of 
the diffraction asymmetry from n-beam dynamic theory 
was made by Cowley & Moodie (1959), who derived 
the phase-grating approximation, and Fujimoto (1959) 
using a thickness expansion. The phase-grating formu- 
lation, which is the high-voltage limit of the dynamic 
theory, has the advantage of showing the character of 
the asymmetry as an oscillating function of thickness 
(Fig.9). 

The generation of dynamically forbidden regions in 
the kinematically forbidden intensities when certain 
symmetry elements are present was discussed by 
Cowley & Moodie (1959) and Cowley, Moodie, 
Miyake, Takagi & Fujimoto (1960). Recently a detailed 
interpretation of these absences was given by Gjonnes 
& Moodie (1965). As a consequence these regions may 
be used in symmetry analysis, without independent 
knowledge of the structure, giving a technique anal- 
ogous to the X-ray method of observing kinematic 
absences. Analyses of the type demonstrated by Kambe 
(1957a, b), which determine the relative phases of spe- 
cific structure factors from the dynamic intensities, are 
then logically a further stage in structure determina- 
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tion, rather than a direct examination of the sym- 
metries. 

Differences in the intensity distribution of symmetri- 
cally related diffracted beams from cadmium sulphide 
in transmission (Laue case) have recently been reported 
by Goodman & Lehmpfuhl (1964), from initial experi- 
ments using convergent beam technique. Extinction 
bands were observed on the kinematically forbidden 
000l intensity distributions, along the [000/]* axis, and 
at right angles along the line of Bragg excitation. The 
present report gives a more detailed analysis of the 
cadmium sulphide pattern, in which n-beam calcula- 
tions are used to obtain a quantitative interpretation 
of the pattern in the direction of the asymmetry. (The 
notation [ ]* has been adopted here to denote direc- 
tions in reciprocal space, analogous to [ ] used for real 
space.) 

The CdS patterns are used as an illustration for the 
general problem. It is shown that the symmetry of the 
diffraction pattern together with an identification of 
dynamic extinction bands determines the symmetry 
group of the projected structure, for the common case 
where higher layer interactions may be neglected. The 
numerical calculations serve to show the limitations of 
the systematic approximation in the case of heavier 
atoms and more complex structures, and the possibility 
of using other approximate methods of calculation is 
examined. 

2. Observation of asymmetry 

Friedel's law was originally formulated for X-ray dif- 
fraction (Friedel, 1913), but since that time has been 
applied in discussion to electron diffraction (e.g. von 
Laue, 1948). For electron diffraction we can define the 
law as: 

( G t ) " ~  = (x~7) "~w , (1) 

representing the dynamic intensities corresponding to 
the incident beam directions (uvw), where u,v, w, are 
coordinates not necessarily integral. From dynamic dif- 
fraction theory this law is expected to break down for 
non-centred structures; equation (1) then becomes the 
general condition for the existence of a centre of sym- 
metry. 

Testing the law rigorously involves comparing the 
diffraction pattern from the same crystal at two set- 
tings, the second setting being obtained by a 180 ° rota- 
tion perpendicular to the incident direction. However, 
it is more valuable to discuss the symmetries expected 
from a single (zone axis) setting. From the form of the 
n-beam solution as a sum of terms containing products 
of the kinematic structure factors, Fnkz, elementary 
rules may be deduced. The symmetries of the structure 
are introduced differently by the zero and upper layers, 
so that the latter need to be considered separately. 
However, the upper layers may introduce asymmetry 
into an otherwise symmetrical zero-layer pattern, but 
not the reverse. Therefore a centrosymmetric conver- 

gent beam pattern or group of patterns defined by 

(Iako)UVw=(I~,o) u~w (2) 

for the [001] projection, may be interpreted as arising 
from a structure which is at least centred in that pro- 
jection. The asymmetric pattern has no such direct 
interpretation, but provided certain other conditions 
are known to hold, namely, 

Gkt = + Fakr (3) 

for all possible reflexions, it will be proof of the lack 
of a centre in the projection, and therefore in the struc- 
ture as a whole. The investigation may be usefully car- 
ried out for any direction of relatively low index in 
the crystal. In this case re-indexing the crystal so that 
/=  0 for the zero layer makes relations (2) and (3) ap- 
plicable to any zone axis pattern. Relation (3) is the 
condition for finding in the structure a mirror or glide 
plane perpendicular to [001]. For all other conditions 
the higher-layer interactions may themselves introduce 
observable non-centrosymmetry. 

Projected structure 

Since in many cases the projected structure alone is 
sufficient to explain the main features of a zone-axis 
pattern, it is useful to consider the two-dimensional 
structure, and its associated diffraction pattern con- 
taining zero-layer reflexions only, as a special case. 
With this simplification the centrosymmetry of the pro- 
jection is directly displayed by the pattern. In addition 
a pattern may have one or more lines of reflexion, 
along principal axes. The diffraction pattern will have 
a mirror line [Ok]* if the relation. 

Gk = + F~k (4) 

holds with either sign (+ )  and ( - )  corresponding to 
a mirror line or glide (b/2) line in the structure respec- 
tively. However, the latter condition is distinguished 
by kinematically forbidden reflexions, defined by (h --0; 
k = 2 n + l ) ,  for which the dynamic intensity goes to 
zero along the [Ok]* axis (Gjonnes & Moodie, 1965). 
A recognition of this characteristic zero-band in alter- 
native {Ok} reflexions therefore enables the diffraction 
pattern symmetry to be fully analysed.]" Illustrations 
of these two possibilities are provided by the [000l]* 
axis, indicated in the two diffraction patterns of Figs. 2 
and 3 (see § 4). 

t Apart from the reservation that upper-layer line interac- 
tions are ignored, this analysis refers only to the symmetry 
elements of the projection. As pointed out by Cowley, Moodie, 
Miyake, Takagi & Fujimoto (1961), certain three-dimensional 
space-group-forbidden reflexions after projection are degraded 
into 'accidental'-forbidden reflexions, which will not be 
dynamically forbidden on the axis. Therefore such elements as 
3-, 4- and 6-fold screw axes cannot be deduced from the 
diffraction pattern of the zone. However, by turning the crystal 
so as to excite only the on-axis reflexions, thus destroying the 
dynamic paths of the forbidden reflexions, the intensities of 
the latter will go to zero, giving the additional information 
necessary for the deduction of these elements. 
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Two of either glide- or mirror-re flexion lines at right- 
angles will ensure also a centre of symmetry (e.g. pmm, 
pgg, ping); alternatively, a centre of symmetry may 
exist without any reflexion lines. 

3. Symmetry of  the zero beam distribution 

In electron diffraction we may measure the zero (direct 
transmitted) beam intensity. This beam is unique in 
the dynamic scattering problem owing to the boundary 
condition that it alone has intensity at the entrance face. 
By analysis of terms from the general series, in the 
manner of Gjonnes & Moodie, Moodie (1968) has 
shown that this condition imposes a higher degree of 
symmetry on the zero beam distribution than for the 
other beams. 

The proof of the relation 
(x000)u~w = (I000)  u°w (5) 

for all structures means effectively that Friedel's law 
holds unconditionally for the zero-beam distribution, 
even when it breaks down for the other beams]" (as in 
the case of a non-centred structure). 

To consider, as was done for the diffracted beams 
in § 2, the symmetry of a single zero-beam pattern about 
a principle direction, it follows that when the condi- 
tions described by relation (3) exist, this pattern must 
be centrosymmetric, even with a non-centrosymmetric 
structure. This central beam symmetry was first de- 
tected experimentally in a group of symmetrically dis- 
posed convergent beam patterns taken about the [2150] 
axis of cadmium sulphide (Fig. 4) (see § 4). 

The symmetries of the zero-beam distribution may 
be analysed by use of the multiple-scattering diagrams 
described by Gjonnes & Moodie (1965). Following 
Moodie (1968), the zero-order amplitude may be ex- 
pressed in terms of paired, closed-loop processes (Fig. 
6), as for example a third-order process 

[(Fhf  h2F~3)+(Fh3FTaF~x)] . Z(O (6a) 
(1) (2) 

(see Fig. 6), where (Fnl . . . )  etc. are products of struc- 
ture factors, and the Z(O are the homogeneous func- 
tions of the excitation errors defined by Cowley & 
Moodie (1962). The invariance of such expressions to 
inversion through the origin, establishes the generality 
of relation (5). 

Projected structure 
If we now as in § 2 treat the two-dimensional problem 

as a special case, ignoring upper-layer effects, corre- 
sponding and equal expressions to (6a), namely 

[(FT,1F~2Fh3)+(FT,3Fh2Fh,)] . Z(O (6b) 
(3) (4) 

5-J.Cowley, A.Pogany and P.Turner have pointed out 
that the symmetry property of the zero beam referred to is a 
direct consequence of the theorem of reciprocity, first enun- 
ciated by von Laue. Implications of this theorem are discussed 
in a work to be published by these authors. 

(see Fig. 6) may always be found on the opposite side 
of the zone axis, demonstrating that at least a centre 
of symmetry must exist in the zero pattern under these 
conditions, when the rest of the diffraction pattern has 
none. Other equivalent pairs, depicted by (e) and (f)  
in Fig. 6, may be found, depending upon axes of sym- 
metry occurring in the projected structure, resulting in 
fourfold, sixfold, etc. symmetry in the zero beam pat- 
tern. Thus it may be deduced from expressions of the 
form of (6) above, that re flexion symmetry will exist 
in the zero-pattern across an axis [0k]* if either of the 
relations, 

Fhk = + rh, , ,  

Fhk = + F~,k, 

holds, or in other words if 

IFhkl = IF~kl. (7) 

For reflexion symmetry to be generated in the diffrac- 
tion pattern, the more restrictive relation (4) must hold. 
Therefore a reflexion line may exist in the zero-beam 
distribution which is not a reflexion line in the diffrac- 
tion pattern. (Example Fig.2: [h,2h,h,O]* axis.) This 
proof could be extended to show that when upper-layer 
terms are included provided relation (3) holds, these 
rules are still valid. 

The simple relations (4) and (7) are not the general 
conditions for symmetrical intensity; however the in- 
fluence of upper layers is in many cases very weak, 
so that they should be useful, at least initially, in anal- 
ysis. A fuller discussion considering the three-dimen- 
sional symmetry properties will be given elsewhere. 

Upper layers 
According to (7) the zero pattern is always centric, 

so that this property gives no structural information, 
but serves experimentally as a marker (see § 4). In fact 
no unique structural information is obtained from this 
distribution if we have only zero-layer interaction; its 
value lies in its ability to reveal upper-layer effects where 
these are likely to destroy symmetries in the diffraction 
pattern. This allows a practical approach. We cannot 
know in commencing an analysis if the symmetries of 
relation (3) exist, but the zero pattern shows the prac- 
tical point, i.e. when their non-existence is of impor- 
tance. 

A symmetric zero pattern allows one to interpret an 
asymmetric diffraction pattern in terms of an asym- 
metric projected structure. This is the case in the anal- 
yses from Figs. 2, 4 and 5; the lack of centre is deter- 
mined from a single pattern, since a non-centric dif- 
fraction pattern occurs together with a centric zero 
pattern. Conversely, a non-centric zero pattern indi- 
cates the influence of upper layers together with the 
absence of glide or mirror planes perpendicular to the 
projection, so that asymmetry in the pattern cannot be 
interpreted uniquely. Where a pattern is obtained show- 
ing non-centric distributions both in the zero beam 
and the diffraction pattern so that the two effects (i.e. 
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upper layers and lack of centre) cannot be separated, 
a second pattern should be taken with the crystal ro- 
tated 180 ° with respect to the first, and a reversal of 
pattern asymmetry will then indicate non-centrosym- 
metry in the structure. 

Directions of projections used in the present investi- 
gation, namely [10T0], [2130], and [3250], are shown 
on a diagram of the cadmium sulphide structure pro- 
jected in the [0001] direction in Fig. 1. Here it is seen 
that the first two projections satisfy the conditions 
given by the relation (3). Therefore, knowing the struc- 
ture, it is seen that the two pattern symmetries analysed 
in the next section refer directly to the projected sym- 
metries, even in the presence of higher-layer interac- 
tions. In the case of the [3250] projection the relations 
(4) are not satisfied, and some higher-layer lines asym- 
metric about the horizontal axis of the picture may be 
seen in the outer regions of Fig.7(c), although their 
influence on the intensities measured is extremely weak. 
Correspondingly, no attempt has been made in the 
calculations discussed in § 5 to introduce correctly the 
interaction of higher-layer re flexions. 

4. Experimental method; results from zone-axis 
orientation 

Thin cadmium sulphide plates (500-1500 A) having 
(1010) principal faces were found in samples grown 
from the vapour phase.]" These crystals were examined 
by convergent beam diffraction, at first in a Siemens 
Elmiskop I using a back-focal-plane heating stage de- 
scribed previously (Goodman & Lehmpfuhl, 1965) 
(Figs. 3 and 4) and later in a special diffraction appa- 
ratus (Cockayne, Goodman, Mills & Moodie, 1967) 
(Figs. 2, 5 and 7). 

Fig. 2 shows the diffraction pattern with the incident 
beam cone symmetrical about the [2130] direction, and 
a diagrammatic representation of the structure pro- 
jected in that direction (inset). The pattern shows com- 
plete symmetry across the [000l]* axis, the details in 
each h2hhl diffraction distribution being exactly re- 
fleeted in the h2hhl distribution. However no mirror 
line exists perpendicular to this axis" the reflexions 
h2hhl, h2hhi form no pairs. Thus the diffraction pattern 
symmetry reflects precisely the symmetry of the pro- 
jected structure. 

In Fig.4 the incident beam has been moved so as 
to be at equal inclinations on either side of the zone 
axis [Fig. 4(a) and (c)], and exactly down the zone axis 
[Fig. 4(b)]. Here it is remarkable that the intensity dis- 
tribution exactly repeats in the zero beam for equal 
angles of tilt, whereas the diffracted beams form no 
companion pairs in the two pictures. This observation 
is in agreement with Moodie's (1968) deduction from 
the theory. The uniqueness of the zero beam in this 
respect gives us a valuable experimental aid. Points 

t Cadmium sulphide crystals were kindly supplied by Frau 
Dr Broser of Fritz-Haber-Institut, Berlin. 

recognized as equivalent in the zero beam patterns of 
such a pair of pictures can bo taken as markers, to 
aid in the detection of quite small asymmetries in the 
diffracted distributions. It can be seen that cadmium 
sulphide has a gross asymmetry compared with the 
sensitivity of the method. 

Extending this experimentally, Fig. 5 shows a set of 
four pictures taken with the zero beam on the corners 
of a rectangle in reciprocal space, symmetrical about 
the zone axis. Here we see that the zero-beam intensity 
distribution has two mirror lines, given by the two 
crystallographic axes, whereas the diffracted beam dis- 
tributions have only one mirror line, i.e. about the 
[000l]* axis. The observation is extended to tilts from 
the zone axis of + 1.7 ° and + 0.7 ° as compared with 
approximately + 0.3 ° covered in the single observation 
(Fig.2). Such an extension, as in Figs.4 and 5, may 

[2130] [IOTO] 

[3 
O .  0 

. . . .  

A (a) 

~ [1~1o]"~" 

(b) 

Fig. 1. (a) [0001] projection of cadmium sulphide. Atomic 
positions marked are for superimposed Cd+S; full and 
open circles represent these atoms at z=0,½, respectively. 
Boundary of a single unit cell is shown, enclosing a unit 
maximum symmetry. The three projections referred to in 
the text are indicated. Broken lines perpendicular to these 
directions represent planes of symmetry which for [10i-0] 
and [2130] vectors are mirror and glide (c/2) planes respec- 
tively. For the [3250] vector no perpendicular mirror or 
glide plane exists. Consequently relation (3) of the text 
holds for the first two projections only. (b) The reciprocal 
lattice section, l=0, showing reflexion vectors occurring in 
the patterns of Figs.2, 3 & 7, which are taken from the 
projections shown in (a). The reciprocal lattice geometry 
is symmetrical about the [0T 10]* and [1 ~ 10]* vectors. Conse- 
quently there is a possibility for the relation (3) of the text to 
hold for the corresponding (viz. [10T0] and [2130]) projections. 
However, the geometry is unsymmetrical about the [2310]* 
vector, so that the relation cannot hold for the [32~01 
projection. 
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Fig.2. Convergent beam diffraction pattern from the [2130] 
projection of cadmium sulphide. The cross ( + )  marks the 
zone axis, in the 0000 beam distribution. The diffraction 
pattern shows mirror symmetry about the [0001]* (horizon- 
tal) axis only. The central beam distribution shows an 
additional mirror symmetry. The inset shows the projected 
structure (pm symmetry), corresponding to orientation of 
the pattern. 

~ - .  c 

,o x b 
~ ,  0 X 
2 

' 0  X 0 

Fig.3. Convergent beam pattern near the [10T0] zone-axis of cadmium sulphide. The incident beam is symmetrically aligned 
with respect to the [0001]* axis (indicated by arrows), and the zero-beam distribution is marked by a cross. Alternate spots on 
this line, which are the kinematically forbidden 000l reflexions, show the characteristic horizontal black band, generated by 
the glide-line symmetry of the planar group pg. As in Fig. 2 the pattern has symmetry across the [0001]* line (the lack of sym- 
metry in the [0001]* direction here is due to the missetting off the zone-axis in this direction. The inset shows the projected 
structure for this orientation. Width of horizontal forbidden bands is ,,,4' of arc; for the purpose of this illustration, 
however, the contrast has been greatly increased, so that the actual width appearing in the weaker spots is not  significant 
(photograph: unheated backfocal plane stage in Siemens Elmiskop). 

[To face p. 3 4 2  
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(a) (b) (c) 

Fig.4. Convergent  beam patterns about  the [21~50] zone axis of  cadmium sulphide:  (a), (c), tilted equal amounts  to either side of  
the axis (i.e. hkl; hkI); (b) zone-axis orientation.  Central  beam patterns in (a) and (c) (indicated by arrows) are mirror  images 
and are also centrosymmetr ic  with respect to the zone axis [+  in (b)], but other diffraction distributions show no such symmet- 
rical relationship, indicating the absence of  mirror  or glide reflexion symmetry  in this (i.e. the [0001]) direction, and absence 
of the centre of  symmetry  in the projected structure. 

L.. 

I " -7 

~ ° 

i 

Fig.5. Extension of  exper iment  of  Fig.4. Incident  beam inclined at four symmetrical  tilts to the [2170] zone axis (i.e. defined 
by hkl, hkl, hk/, hkl). The central beam distr ibution which shows reflexion symmetry  with respect to the two principal axes in the 
project ion was used as a marker  to locate the orientations.  These were such as to excite the 0004, (000~) and 22[20, (~4~0) 
reflexions s imultaneously;  the rota t ion angles between settings are shown beside the Figure. The aperture is not  exactly centred 
on the orientations but the inset shows the relative location of  the same geometric  pat tern  for the zero beam in the pictures 
(found in the four  corners of  the Figure), with respect to the aperture.  The group of  diffraction patterns shows reflexion sym- 
metry about  the horizontal  but  not  the vertical axis. Indicated by an arrow-head,  the 0002 distribution shows almost  a black 
to white t ransformat ion  in going f rom left to right picture, though  no such change is found going from lower to upper  picture. 
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(a) 

(b) 

0 X 
i,,~#, _ 0 X 

0 X 
0 X 

(c) 

X 
(d) 

Fig. 7. Convergent beam patterns from region of [32~0] zone axis of cadmium sulphide. (a) Kossel-Mollenstedt pattern of almost 
one-dimensional structure. The incident beam is placed centrally in the 0002 Kikuchi band, but removed from the [32~0] 
zone-axis in a direction indicated by x in 7(c). The 000~, 0000, 0002, beams are shown. (b) Similar pattern obtained for the 
[3230] zone-axis orientation, marked t in 7(d). (c) Projected structure in the [3230] direction, where the Cd (open circles) and S 
(crosses) atoms are directed as revealed by the calculation in Fig.8(c). Rotat ion arrow indicates direction of the [2130] zone, 
as determined from indexing upper-layer lines in 7(c). (d) Kossel pattern, centred on the zone axis, indicating the regions 
from which the patterns of 7(a) and (b) were taken. 

[To face p. 343 
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increase the sensitivity of the symmetry observations, 
as well as introducing increased coupling with the 
higher-layer reflexions. 

The projection of Fig.2 corresponds to the plane 
group pm, and has only a mirror-reflexion line. If we 
rotate the crystal into the [1010] projection, which has 
the symmetry of pg, with one glide-reflexion line, we 
generate forbidden 000l reflexions which display the 
on-axis dynamic extinction bands found previously 
(Goodman & Lehmpfuhl, 1964). Fig. 3 is taken from 
this projection with the beam symmetrical relative to 
the [000l]* axis. In addition to the forbidden bands, 
the diffraction pattern shows mirror symmetry about 
this axis. The exact zone axis orientation was avoided 
here, because of additional crossing extinction bands 
in this region complicating the pattern. 

5. Calculationsmapplicability of systematic 
approximation 

It was found previously (Goodman & Lehmpfuhl, 
1967) that for structures sufficiently simple and com- 
posed of sufficiently light atoms, as for example mag- 
nesium oxide, it was possible to obtain accurate results 
with calculations based on systematic interactions only, 
provided the reflexions from a principal zone were not 
excited. Since cadmium sulphide has a much greater 
scattering potential and larger unit-cell dimensions than 
magnesium oxide the influence of the non-systematic 
interactions should be more important. 

In order to obtain a pattern suitable for relatively 
simple calculation, the crystal was rotated about the 
c axis to a setting far from the zone axis, where a dif- 

h l ~ /  X~ h 2 h3 , , 

(a) (c) (e) 

H~7~xE ~ h 

, ~ ~ h  C 3 h 

(b) (d) (f) 

Fig. 6. Diagrams in reciprocal space for third-order scattering 
processes. The excitation errors (1, (2... of the text refer 
to the termination points in the diagrams of the hi, h2... 
vectors (corners of the triangle) (see also Gjonnes & Moodie, 
1965). Diagrams (a), (b), (c) and (d) show processes occur- 
ring with the incident beam at equal inclinations on opposite 
sides of a zone axis, corresponding to what is observable in 
a convergent beam pattern. Equating of structure factors 
in the first and second pair of diagrams is then made with 
the proviso regarding higher-layer interactions discussed 
in § 2. Diagrams (e), (f) show processes which are the proces- 
ses (a), (b) mirrored across a principal (vertical) axis. Special 
relationships holding between Fhl and Fh'l, etc. due to 
symmetry across the axis, cause special symmetries in the 
central beam distribution (see text). 

fraction pattern of one-dimensional structure showing 
the symmetry properties occurring in one direction was 
obtained [Fig. 7(a)]. The crystal thickness here corre- 
sponded very nearly to an extinction length. A calcu- 
lation was run which included only the 000l systematic 
interactions by the multi-slice method, as described in 
the previous work (Goodman & Lehmpfuhl, 1967). 
For this calculation 13 beams were used; scattering 
curves for Cd and S from Table 3.3.3.A of International 
Tables for X-ray Crystallography (1952) were used. Fig. 
8(a) shows calculated results for the three main reflexions 
for a crystal thickness of 1249 •. This thickness is in very 
approximate agreement with a determination from an 
isolated high-order reflexion using the simple kinemat- 
ical relation. The main features of Fig. 7(a) are repro- 
duced by the calculation. An outstanding deviation is 
that the minimum in the calculated 0000 distribution 
shows an appreciable intensity, whereas the experi- 
mental value is much nearer zero. In addition the agree- 
ment with calculation for the 0002, 0002 distributions 
is not in itself sufficient to distinguish between the 
fitting at neighbouring extinction lengths. In proceed- 
ing from one extinction length to the next the behaviour 
of the 0002 and 0002 reftexions are interchanged (see 
Fig. 7), so that determination of the absolute orienta- 
tion of the crystal depends upon knowledge of the 
crystal thickness. 

The closest non-systematic reflexions in the experi- 
ment were those from the [3250] zone. The crystal was 
turned to this orientation. The Kossel pattern from 
this region is shown in Fig. 7(d). A convergent beam 
pattern taken with the diffraction aperture in the centre 
of this region (marked by +)  is shown in Fig. 7(b). The 
major change occurring between Figs. 7(a) and 7(b) can 
be described by the transfer of intensity to the centre 
of the 0000 distribution from regions in the diffracted 
distributions. Two-dimensional calculations by the 
multi-slice method were run which included the inter- 
actions from the [3250] zone, at first for the zone-axis 
setting, corresponding to Fig. 7(b) [+ position in Fig. 
7(d)], and secondly for an orientation outside the zone 
as in Fig. 7(a) [x position outside Fig. 7(c)]. As shown 
by the crosses in Fig. 8(a), these calculations success- 
fully describe the behaviour of the 0000 distribution 
at the central minimum, for Fig. 7(a) and (b). It was 
therefore clear that even for the orientation of Fig. 7(a) 
far from a strong zone, the pure systematic calculation 
based on only 000l interactions was inadequate, and 
a two-dimensional calculation was necessary to explain 
quantitatively the features of the distribution. 

The difficulties of using the systematic approxima- 
tion to describe diffraction from a structure exhibiting 
strong interaction may be best seen by examining the 
Pendell/Ssung, or equal thickness fringes. Fig. 9 shows 
the calculation for symmetrical orientation (incident 
beam perpendicular to [0001]) including systematic 000l 
interactions. An oscillation of the diffraction asym- 
metry may be seen by comparing curves (b) and (c) 
in Fig.9. By comparing the curve of Fig.9(a) with 
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curve (1) of  Fig. 10(a), which was made with two- 
dimensional  calculations, the failure of the systematic 
approximat ion is exhibited. Firstly the curve of Fig. 9(a) 
never reaches zero, and further the cosinusoidal ap- 
pearance of this curve is replaced in the full calculation 
[Fig. 10(a)] by a more damped oscillation. (In this latter 
respect the character is better shown by the two-dimen- 
sional phase-grating calculation which in the simple 
case of a cosine lattice gives for the zero-beam the zero- 
order Bessel function, than by the 2-beam or the syste- 
matic  calculation for which the result is roughly 
cosinusoidal.) Moving to inside the zone-axis region 
(curve (2), Fig. 10) shortens the oscillation period, 
leading to the difference found between Figs. 7(a) and 
7(b). 

To examine the possibility of  reducing the calcula- 
t ion in such cases of weak non-systematic interaction, 
a third type of  calculation was run. For  this a syste- 
matic calculation was made, using however scattering 
potentials 'corrected' for effects of  non-systematic inter- 
action. The 'corrected'  000l scattering potentials were 
derived by a two-dimensional  phase-grating calculation 
for the [3230] orientation. In other words the multi- 
slice calculation was made one-dimensionally using 
only the ~uz scattering ampli tudes;  but  these were cal- 
culated by performing the summat ion  

~z=  Z exp (kr@xz. y). exp (i2zdy), 

where ~xz is the two-dimensional  projected potential  
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Fig. 8. Intensity distribution curves calculated by the multislice method (at 80 kV) of the 000~, 0000, 0002 (from the left) 
reflexions, and plotted about the central position over an angular range corresponding to that of Fig.7(a) and (b). One 
division on the horizontal scale corresponds to the angle (00002/4), where 00002 = 2/2d0002. (a) Calculated for only systematic 
interactions between 0001 reflexions, including 13 beams (T= 1250/~,). Added to the central curve are crosses showing values 
obtained for the central orientation by full two-dimensional calculation. The lower, diagonal cross corresponds to the orien- 
tation of Fig. 7(a) and the upper cross to that of Fig. 7(b). (b) Systematic calculation for 13 beams, using 'corrected' scattering 
potentials (T= 1255 A), together with experimental curve obtained by scanning Fig.7(a) with a vertical slit. Main deviations 
between experiment and calculation occur where interference from extra reflexions can be seen in the pattern. Experimental 
curves have an arbitrary intensity scale, and an arbitrary smooth background has been subtracted. (c) Full two-dimensional cal- 
culation for 117 beams for the angular distribution about the [3270] zone axis [corresponding to Fig.7(b)], together with the 
experimental curve obtained from Fig. 7(b). Most features of the experimental curve are reproduced by this calculation. Probable 
reasons for discrepancies remaining between experiment and calculation are given in the text. 
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of the structure projected through a distance y (Cowley 
& Moodie, 1957), rather than taking 

~vt = Z' exp ( k r ~ z .  y ) .  exp ( i 2 n l z ) ,  
z 

where 
l l a  

~z  = Cxz • d x  , 
o 

which excludes all interactions from non-systematic 
reflexions. The results obtained show reasonable agree- 
ment with the intensities outside the zone [Fig.7(a)], 
though not with those inside [Fig.7(b)]. This is not 
surprising since the condition which such an approx- 
imation implies is that the amplitudes of the non-syste- 
matic reflexions are significant only for very thin crys- 
tals, for which the phase-grating approximation is valid, 
a condition which can only hold for crystal orientations 
sufficiently far from the zone. The thickness curve ob- 
tained by this method is almost identical with the full 
calculation for outside the zone (compare curves (1) 
and (3) of Fig. 10). Considering the enormous saving 
in calculation time involved, this is obviously a useful 
approximation to apply where neighbouring weak 
zones are present. 

An angular distribution obtained by this method for 
a crystal thickness of 1255/~ shows rough agreement 
with the experimental curve obtained from Fig.7(a) 
[Fig.8(b)]. Regions of disagreement can be seen to 
occur particularly where the diffraction pattern of Fig. 
7(a) shows interference from crossing non-systematic 
lines. Full two-dimensional calculation for this pattern 
was not carried out, since it appeared that such small 
deviations from one-dimensional character would make 
a more accurate comparison with calculation very dif- 
ficult. 

On the other hand, the intensity distributions within 
the zone [Fig. 7(b)] appeared much more one-dimen- 
sional in character. Therefore, it was practical to obtain 
reliable experimental curves, using the normal micro- 
photometer method of scanning the pattern with a 
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Fig. 9. Results, for the 0000, 0002, and 0002 reflexion intensi- 
ties, from a calculation for systematic interaction of 13 
{000/} reflexions (E= 80 kV). 

vertical slit. The result thus obtained is shown together 
with a full two-dimensional calculation, for crystal 
thicknesses of 1189 and 1198 A in Fig. 8(c). The absence 
of intensity change with tilts about the [0001] axis [i.e. 
parallel to the intensity stripes in Fig.7(b)] can be 
understood by considering the main off-axis refiexions 
contributing to the zone-axis interaction, 2310 and 
23T0. Inside the zone region the excitation errors (2310 
and (23T0 are both negative and therefore cause in- 
phase additions to the 'effective' 000l potentials (using 
the concept of weak-beam addition-potentials as de- 
rived by Bethe, 1928). Furthermore by rotating about 
the [0001] axis these ('s change, one increasing as the 
other decreases so that the total correction remains 
fairly constant. If we pass just outside the zone region, 
however, one ( becomes positive so that the two addi- 
tion potentials are out of phase. The correcting poten- 
tial then rapidly becomes a subtraction term, with con- 
sequent lengthening of the PendellSsung period. The 
phenomenon is related to the well-known appearance 
of Kikuchi bands (Shinohara, 1932), although here we 
have a crossing of two bands. It follows from this dis- 
cussion, and from the form of the results in Fig. 8(b), 
that there should be a systematic approximation to the 
n-beam calculation also for this region using corrected 
potentials (analogous to addition-potentials), but at 
present there is no obvious way for obtaining the cor- 
rected potentials. 

The agreement between experiment and calculation 
as shown in Fig. 8(c) is now quite good, and allows a 
sensitive estimate of crystal thickness to be made. The 
zero beam distribution shows a fit between 1189 A and 
1198 A (125 and 126 slices) which agrees with a crystal 
thickness of 109 unit cells, with the c spacing 10.94 A 
of this orientation (here the slice thickness and c 
spacing were not equivalent), which would represent 
the true thickness if we could assume that the structure 
potentials used for calculation were sufficiently accu- 
rate. However a difference between the thickness values 
from Fig. 8(b) and (¢) probably indicates error in these 
potentials. Discrepancies remaining between the two 
curves can be understood from the following considera- 
tions" 

(1) Assumption of a uniform intensity along the band 
inside the zone is only approximately justified. 

(2) Scattering potentials for Cd and S used may not 
be sufficiently accurate. 

(3) The diffuse (Kikuchi) pattern which occurs as a 
background to the diffraction pattern is included 
in the measured curve, though not in the calcula- 
tion. 

(4) Upper-layer interactions have not been correctly 
taken into account. 

(5) The calculation was made without considering ab- 
sorption. 

These points could be taken into account in a more 
complete investigation, but further refinement was not 
undertaken at this stage. 

A C 24A - 2 
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An interesting point arises concerning the diffuse 
pattern (3). As may be seen in Fig. 8(c), there is some 
asymmetry in the experimental zero beam pattern. This 
cannot be due to the asymmetric upper layers which 
exist for this projection, since in this case these can 
only cause asymmetry perpendicular to [000l]*. Moodie 
(1967) showed that the symmetry of the zero beam is 
maintained even after introducing phenomenological 
absorption into the structure potentials. However, the 
proof will not be valid for diffuse scattering since this 
has a finite scattering angle, so that the diffuse pattern 
surrounding the zero beam can have an asymmetry due 
to the breakdown of Friedel's law. 

The numerical analysis above has determined the 
absolute orientation of the crystal giving rise to Fig. 7, 
although this would not have been possible from simple 
inspection of the main beams except for very thin crys- 
tals. An oscillation of the diffraction asymmetry occurs 
between the 0002 and 0002 beams with thickness, al- 
though it can be seen that on the average the 0002 beam 
[Fig. 10(b)] is the stronger. Results from Fig. 9(c) show 
that for Fig.7 the C d - +  S axis is directed as shown 
in the structure diagram, Fig. 7(c). Further, indexing 
of the upper-layer lines of 7(c) determines the direction 
of rotation of the crystal from the nearest principle 
zone [arrow of Fig. 7(c)]. 

6. Summary 

The diffraction pattern of cadmium sulphide has been 
analysed in a preliminary exercise, to explore the pos- 

sibilities of systematic analysis in determining elements 
of symmetry from the electron diffraction pattern. In 
particular, where the stability of the specimen permits 
examination, detection of presence or absence of a 
centre of symmetry may be a useful adjunct to an X-ray 
analysis, since this symmetry is not revealed directly 
by kinematic X-ray intensities. Also the possibility 
clearly exists of fairly accurate determination of an 
asymmetric component of potential distribution, using 
n-beam calculations. Such discussion applies to perfect 
crystals. For disordered crystals further consideration 
is necessary, since the dynamic symmetry refers to the 
symmetry of the whole crystal. 

In conclusion the authors wish to thank Mr A.F.  
Moodie for his continued interest and for first pointing 
out the reason for the special symmetry of the zero- 
order beam distribution, and Dr A.W.S. Johnson for 
his guidance in editing the manuscript. 
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Scattering factors for the atoms in a structure may be evaluated as functions of the scattering vector s 
when a complete set of two- or three-dimensional structure factor measurements is available. 

Introduction 

Recently (e.g. Dawson, 1967a, b) there has been inter- 
est in the variation of the atomic scattering factor with 
the orientation of the scattering vector. A method for 
the determination of a set of spherically averaged form 
factorsjS(Isl) from a zone of structure factors has been 
described by Brown & Wilkinson (1965). The purpose 
of the present note is to show that a similar calculation 
may be used to determine from a zone or sphere of 
observed structure factors of known phase the scatter- 

the integration being over the whole 'volume' of the 
atom. Thus 

j~(s) = l (1/V)Z" {r ' (k)  exp (2nir#.k) exp (2nirj . s)}drj 
d k 

= ( l / V )  2" F'(k) I exp [2nir s . (s+k)]drs,  
k d 

where F'(k) has been written for F(k) exp (2~ziQj. k). 
Let ~ be the angle between (s + k) and r. Then S os 

J~(s) = ( l / V )  F'(k) exp (2nirjIs+ kl cos e)2nr z sin ~dedr 
rj=O ==0 

_ 1 r f Ft(k){ sin (2zrR0ls + kl)-2~rR0/s + klcos (2~zR0ls + kl)~ 
27~zv k [  Is+kl 3 J '  

ing factors j~(s) as functions of the scattering vector 
s(=d*). 

Method of calculation 

The electron-density distribution which is obtained by 
Fourier inversion of a three-dimensional set of struc- 
ture factors is given by 

where R0 is the atomic 'radius'. 
A similar expression can be derived for the extrac- 

tion of a scattering factor from a zone of reflexions. 
If s is any scattering vector in the zone then 

J~(s) = Ro/A Z,l.F'(k)Jl(27~ls + r  klR0) l 
I ~  J" k l  

Q(rj)=(1/V) Z F(k) exp (2rcirj. k) exp (2zciQj. k) 
k 

where ry is the radius vector from the centre of the j th  
atom which is vector distance Qj from the origin of 
the structure factors F(k), V is the unit-cell volume 
and k is the scattering vector. 

The scattering factor for this atom is defined to be 

j~(s) = I 0(ry) exp (2~zirj. s)dzj, 

Jx is the first order Bessel function and A the area of 
the unit cell in projection. 

Numerical calculation of form factors 

The calculations have been programmed for the 
TITAN computer and have been tested with 'prepared' 
data generated for an imaginary structure having Mn 3+ 
ions with one 3d electron placed on a primitive cubic 
lattice of cell side 3 A. The single 3d electron was given 
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